
Analytical results for a Bessel function times Legendre polynomials class integrals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L293

(http://iopscience.iop.org/0305-4470/39/18/L06)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L293–L296 doi:10.1088/0305-4470/39/18/L06

LETTER TO THE EDITOR

Analytical results for a Bessel function times Legendre
polynomials class integrals

A A R Neves, L A Padilha, A Fontes, E Rodriguez, C H B Cruz,
L C Barbosa and C L Cesar

Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas, PO Box 6165,
13083-970 Campinas, Brazil

E-mail: aneves@ifi.unicamp.br

Received 13 February 2006
Published 19 April 2006
Online at stacks.iop.org/JPhysA/39/L293

Abstract
When treating problems of vector diffraction in electromagnetic theory, the
evaluation of the integral involving Bessel and associated Legendre functions
is necessary. Here we present the analytical result for this integral that will make
numerical quadrature techniques or localized approximations unnecessary. The
solution is presented using the properties of the Bessel and associated Legendre
functions.

PACS numbers: 41.20.−q, 42.25.Fx, 42.60.Jf

1. Introduction

In a recent work to calculate the optical force of the optical tweezers in a complete
electromagnetic treatment for any beam shape focused at an arbitrary position, we encountered
an integral involving Bessel and associated Legendre functions [1]. The same integral appears
in fields related to vector diffraction theory where computationally intensive methods or
approximations are employed [2]. This letter presents the analytical evaluation of this
integral (1).

Typically, the first task in solving scattering problems is to decompose the incident beam
into partial waves involving associated Legendre polynomials P m

n (cos θ) for the angular part
and spherical Bessel functions jn(kr) for the radial part. The difficulty in doing this exactly is
to determine an analytical expression for integrals of the class

Im
n =

∫ π

0
dθ sin θ exp(iR cos α cos θ)P m

n (cos θ)Jm(R sin α sin θ), (1)

which, so far, have not been reported in a closed form, as far as we know. This integral is not
shown in any Integral Tables, nor in calculation packages such as Mathematica, and we do
not know of any other report of this result. An analytical expression for this integral would
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be useful for many different fields in physics, especially for those that require partial wave
decomposition. Without this result people have used all sorts of approximations to proceed
forward and obtain results [3].

2. General analysis

We analysed the behaviour of such integrals for the limit of kr = R → 0 using Lock’s result
for the integral [4]∫ π

0
dθ sin|m|+1 θ exp(±iR cos θ)P |m|

n (cos θ) = 2(±i)n+|m| (n + |m|)!
(n − |m|)!

jn(R)

R|m| (2)

and found that the lowest order term would be compatible with the closed form and simple
expression given by

Im
n = 2in−mP m

n (cos α)jn(R) (3)

valid for any n � 0 and −n � m � n. We then tested it numerically using Mathematica
software (version 5.2) for randomly generated n, m, α and R and showed that this result is
indeed true. It would also allow one to access a whole family of integrals by taking any
number of derivatives with respect to R or α, such as∫ π

0
dθ sin θ

d

dR
[exp(iR cos α cos θ)Jm(R sin α sin θ)]P m

n (cos θ) = 2in−mP m
n (cos α)j ′

n(R).

(4)

After discovering the expression for this integral, we proceed to prove it using the same
induction procedure used in the Lock integral paper. We started by proving that Im

n follows
the same recurrence relations as Fm

n = 2in−mP m
n (cos α)jn(R). We then proved that the results

hold for n = m = 0.
The recurrence relations for Im

n can be obtained by the associated Legendre polynomials
recurrence relations

(2n + 1) sin θP m
n (cos θ) = P m+1

n−1 (cos θ) − P m+1
n+1 (cos θ)

= (n − m + 1)(n − m + 2)P m−1
n+1 (cos θ) − (n + m)(n + m − 1)P m−1

n−1 (cos θ), (5)

where we adopted the sign convention for the associated Legendre polynomials of Abramowitz
and Stegun [5], followed by the Mathematica software. The Bessel functions recurrence
relation

Jm(R sin α sin θ) = R sin α sin θ

2m
[Jm−1(R sin α sin θ) + Jm+1(R sin α sin θ)]. (6)

Using relations (5) and (6), it can be readily shown that

Im
n = R sin α

2m(2n + 1)

[
(n − m + 1)(n − m + 2)Im−1

n+1 − (n + m)(n + m − 1)Im−1
n−1 + Im+1

n−1 − Im+1
n+1

]
(7)

is the desired recurrence relation for Im
n .

Now, for Fm
n = 2in−mP m

n (cos α)jn(R) we used the associated Legendre polynomials
recurrence relation
2m

sin α
P m

n (cos θ) = −(n − m + 1)(n − m + 2)P m−1
n+1 (cos α) − P m+1

n+1 (cos α)

= −(n + m)(n + m − 1)P m−1
n−1 (cos α) − P m+1

n−1 (cos α) (8)
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and the spherical Bessel functions relation

jn(R) = R

2n + 1
[jn−1(R) + jn+1(R)] (9)

to prove that

Fm
n = R sin α

2m(2n + 1)

[
(n − m + 1)(n − m + 2)Fm−1

n+1

− (n + m)(n + m − 1)Fm−1
n−1 + Fm+1

n−1 − Fm+1
n−1

]
. (10)

This assures that both sides of the identity follow the same recurrence relation. Therefore,
the only task remaining is to prove that

I 0
0 =

∫ π

0
dθ sin θ exp(iR cos α cos θ)J0(R sin α sin θ) = 2j0(R) (11)

holds for n = m = 0. Now, the series expression for J0 is

J0(R sin α sin θ) =
∞∑

s=0

1

22s

(−1)s

s!s!
R2s(sin α)2s(sin θ)2s; (12)

therefore,

I 0
0 (R, cos α) =

∞∑
s=0

1

22s

(−1)s

s!s!
R2s(sin α)2s

∫ π

0
dθ sin θ exp(iR cos α cos θ)(sin θ)2s . (13)

The Poisson integral representation of the spherical Bessel function is

js(R) = Rs

2s+1s!

∫ π

0
dθ sin θ cos(R cos θ)(sin θ)2s (14)

which, added to the parity null term∫ π

0
dθ sin θ sin(R cos θ)(sin θ)2s = 0, (15)

can be rewritten as∫ π

0
dθ sin θ exp(iR cos α cos θ)(sin θ)2s = 2s+1s!

Rs
js(R). (16)

This leaves the initial integral as

I 0
0 (R, cos α) =

∞∑
s=0

1

2s

(−1)s

s!
Rs(sin α)2s 2

(cos α)s
js(R cos α). (17)

That is still not good because the argument of the spherical Bessel function is R cos α

instead of R. To change the argument, we use the multiplication theorem for Bessel functions

Jν(λz) = λν

∞∑
s=0

1

2s

(1 − λ2)s

s!
zsJν+s(z). (18)

To obtain

jn(z) =
√

π

2z
Jn+1/2(z), (19)

we can now make ν = 1/2, n = 0, z = R cos α and λ = 1/cos α. Therefore,

j0(R) = 1√
cos α

∞∑
s=0

(−1)s

2s

(1 − cos2 α)s

s!(cos α)2s
(R cos α)s

√
π

2R
Js+1/2(R cos α), (20)
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and finally

j0(R) =
∞∑

s=0

(−1)s

2s

(sin α)2s

s!(cos α)s
Rsjs(R cos α). (21)

Comparing this result with the obtained series, it turns out that

I 0
0 = 2i0P 0

0 (cos α)j0(R) (22)

and the proof is complete, validating the following integral for all n and m:∫ π

0
dθ sin θ exp(iR cos α cos θ)P m

n (cos θ)Jm(R sin α sin θ) = 2in−mP m
n (cos α)jn(R). (23)

3. Concluding remarks

In this letter, we have shown the analytical solution to an integral involving Bessel and
associated Legendre functions (23). We have obtained the solution through recurrence relations
and the multiplication theorem. We believe that this result, analytical and simple, is of interest
to the general community especially for problems involving electromagnetic vector diffraction
of arbitrary beams.
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